

Edexcel GCE
 Core Mathematics C1
 $$
\begin{aligned} & \text { Advanced Subsidiary } \\ & \text { Set A: Practice Paper } 1 \end{aligned}
$$

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae

Items included with question papers
Nil

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	

1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7 .
(b) Hence, or otherwise, evaluate $\sum_{r=1}^{142}(7 r+2)$.
2. Solve the simultaneous equations

$$
\begin{gathered}
x-3 y+1=0 \\
x^{2}-3 x y+y^{2}=11
\end{gathered}
$$

3. The first three terms of an arithmetic series are $p, 5 p-8$, and $3 p+8$ respectively.
(a) Show that $p=4$.
(b) Find the value of the 40th term of this series.
4.

$$
\mathrm{f}(x)=x^{2}-k x+9 \text {, where } k \text { is a constant. }
$$

(a) Find the set of values of k for which the equation $f(x)=0$ has no real solutions.

Given that $k=4$,
(b) express $\mathrm{f}(x)$ in the form $(x-p)^{2}+q$, where p and q are constants to be found,
5.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=5+\frac{1}{x^{2}} .
$$

(a) Use integration to find y in terms of x.
(b) Given that $y=7$ when $x=1$, find the value of y at $x=2$.
6. A container made from thin metal is in the shape of a right circular cylinder with height $h \mathrm{~cm}$ and base radius $r \mathrm{~cm}$. The container has no lid. When full of water, the container holds $500 \mathrm{~cm}^{3}$ of water.

Show that the exterior surface area, $A \mathrm{~cm}^{2}$, of the container is given by

$$
A=\pi r^{2}+\frac{1000}{r} .
$$

7.

Figure 1

The points $A(-3,-2)$ and $B(8,4)$ are at the ends of a diameter of the circle shown in Fig. 1.
(a) Find the coordinates of the centre of the circle.
(b) Find an equation of the diameter $A B$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(c) Find an equation of tangent to the circle at B.

The line l passes through A and the origin.
(d) Find the coordinates of the point at which l intersects the tangent to the circle at B, giving your answer as exact fractions.

